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Abstract
We study a triangular frustrated antiferromagnetic Heisenberg model with nearest-neighbor
interactions J1 and third-nearest-neighbor interactions J3 by means of Schwinger-boson
mean-field theory. By setting an antiferromagnetic J3 and varying J1 from positive to negative
values, we disclose the low-temperature features of its interesting incommensurate phase. The
gapless dispersion of quasiparticles leads to the intrinsic T 2 law of specific heat. The magnetic
susceptibility is linear in temperature. The local magnetization is significantly reduced by
quantum fluctuations. We address possible relevance of these results to the low-temperature
properties of NiGa2S4. From a careful analysis of the incommensurate spin wavevector, the
interaction parameters are estimated as J1 ≈ −3.8755 K and J3 ≈ 14.0628 K, in order to
account for the experimental data.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In two-dimensional (2D) antiferromagnets, it was proposed
the ‘geometrical frustration’ may enhance the quantum spin
fluctuation and suppress the magnetic order to form a spin
liquid [1]. In this context the triangular- and Kagomé-
related lattices are studied extensively to seek a quantum spin
liquid [2]. It turns out that the triangular lattice antiferromagnet
with nearest-neighbor (NN) coupling exhibits 120◦ magnetic
order [3], while the Kagomé lattice antiferromagnet is still
a controversial topic for intriguing exploring [4]. People
resort to other interactions, such as longer range and
multiple-spin exchange ones, to realize a quantum spin
liquid [2]. Experimental evidence in favor of this long-
predicted spin-liquid state have emerged in recent years5,

5 The main evidence comes from the Kagomé-related materials. For recent
progress see [5].

although many aspects are still elusive. The spin disorder at
low temperatures found in the compound NiGa2S4, in which Ni
spins (S = 1) form a stack of triangular lattices, aroused much
attention [6–9]. The crystal structure of the material is highly
2D, since inter-layer interactions are quite weak. Intriguing
low-temperature properties of this material include the T 2 law
of specific heat, incommensurate short-range spin correlation
and lack of divergent behavior of the magnetic susceptibility.
A dominant third-nearest-neighbor (3-NN) antiferromagnetic
(AFM) interaction J3 could produce the incommensurate phase
in a rough picture: four sublattices will form commensurate
120◦ magnetic order separately if the NN interaction J1 is zero,
and the system will be driven into an incommensurate order
if J1 is gradually switched on. A first-principles calculation
by Mazin [10] suggests a large 3-NN interaction J3 and a
negligible 2-NN interaction. J3 is confirmed to be AFM, but
the sign of J1 has not yet been identified [10]. The classical
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spin version of this model was studied in a Monte Carlo
simulation [11], which provides some helpful information such
as the incommensurability. Up to now, the quantum spin
version of this model has not yet been studied very well.
Besides the sign of J1, many aspects of this model, either in
agreement or disagreement with the experiment of NiGa2S4,
need further clarification and treatment. In this paper we focus
on the low-temperature properties of the quantum spin model
and intend to make a contribution to this topic.

The Schwinger-boson mean-field theory (SBMFT) pro-
vides a reliable description for both quantum ordered and dis-
ordered antiferromagnets based on the picture of the resonant
valence-bond (RVB) state [1, 12, 13]. As a merit, it does not
prescribe any prior order for the ground state in advance, which
should emerge naturally if the Schwinger bosons condense in
the lowest energy states. For the Heisenberg antiferromagnets
with NN couplings at zero temperature, it successfully captures
the (π, π ) magnetic order on the square lattice and the 120◦
magnetic order on the triangular lattice, respectively [12–15].
By means of SBMFT, we will show that the J1–J3 model falls
into an incommensurate order phase at zero temperature for an
AFM J3 and either an FM J1 or an AFM J1. We also show
that the T 2 law of specific heat is an intrinsic feature of this
phase, the magnetic susceptibility is linear in temperature and
the local magnetization is significantly reduced by quantum
fluctuations. We address the possible relevance of these results
to low-temperature properties of NiGa2S4. In agreement with
previous work [11], we find that the NN interaction J1 should
be in the small FM region to obtain the incommensurate
wavevector observed in the experiment. Our results suggests
that the J1–J3 model is an essential part of the minimal model
for NiGa2S4. In the following, we first present a formalism of
the SBMFT scheme for the J1–J3 model, then solve the mean-
field equations numerically and calculate relevant quantities.
Finally we discuss the physical meanings of the results.

2. The Schwinger-boson mean-field theory

The J1–J3 model on the triangular lattice is

H = J1

∑

〈i j〉∈NN

Si · S j + J3

∑

〈i ′ j ′ 〉∈3rd−NN

Si ′ · S j ′ . (1)

We set J3 > 0, but J1 can be either AFM or FM. In the
Schwinger-boson representation for the spin operators, S+

i =
a†

i bi , S−
i = b†

i ai , Sz
i = (a†

i ai − b†
i bi)/2 with [ai , a†

j ] =
[bi, b†

j ] = δi j , we decompose the NN and 3-NN interactions
as [16]

J1Si · S j = J1:F†
i j Fi j : − J1 A†

i j Ai j, (2)

J3Si ′ · S j ′ = −J3�
†
i ′ j ′ �i ′ j ′ , (3)

with Fi j = (a†
i a j + b†

i b j)/2, Ai j = (ai b j − bi a j)/2
and �i ′ j ′ = (ai ′ b j ′ − bi ′ a j ′ )/2. Correspondingly, we
introduce three competing mean fields, F = 〈Fi j 〉, A =
−i〈Ai j〉 and � = −i〈�i ′ j ′ 〉, and apply the Hartree–Fock
decompositions for the interactions. A Lagrangian multiplier
λ is also introduced to impose the constraint on the Schwinger
bosons, +λ

∑
i (a

†
i ai + b†

i bi − 2S). After performing the

Fourier transform, the effective Hamiltonian can be written in
a compact form:

Heff =
∑

k

φ
†
k M(k)φk + ε0, (4)

where φ
†
k = (a†

k, b†
k, a−k, b−k), M(k) = ε(k)σ0 ⊗ σ0 +


(k)σy ⊗ σy, ε(k) = λ − J1 F
∑

δ cos k(δ),
(k) =
J1 A

∑
δ sin k(δ) + J3�

∑
δ sin 2k(δ), ε0 = 3N�(−J1 F2 +

J1 A2 + J3�
2) − N�λ(2S + 1) and ⊗ means the Kronecker

product, σ0 is a 2 × 2 unit matrix and σαs (α = x, y, z) are
Pauli matrices, k(δ) = kx, kx/2 + √

3ky/2,−kx/2 + √
3ky/2

for δ = 1, 2, 3, respectively. The Matsubara Green functions
are defined as

G(k, τ ) = −〈Tτ φk(τ )φ
†
k〉, (5)

where τ is the imaginary time and φk(τ ) = eτ Heffφke−τ Heff .
All physical quantities can be expressed in terms of the matrix
elements of the Green function.

The Matsubara Green function in Matsubara frequency
ωn = 2nπ/β (n is an integer for bosons) can be worked out
as

G(k, iωn) = iωnσz ⊗ σ0 − ε(k)σ0 ⊗ σ0 + 
(k)σy ⊗ σy

(iωn)2 − ω2(k)
.

(6)
From the poles of the Matsubara Green function, the two
degenerate spectra of the quasiparticles can be readily read out:

ω(k) =
√

ε2(k) − 
2(k). (7)

The mean-field equations are established by the constraint and
the introduced mean fields. We omit the details and only
present the results here:

1

N�

∑

k

(1 + 2nB[ω(k)]) ε(k)

ω(k)
= 2S + 1, (8a)

1

6N�

∑

k

(1 + 2nB[ω(k)])ε(k)
∑

δ cos k(δ)

ω(k)
= F, (8b)

1

6N�

∑

k

(1 + 2nB[ω(k)])
(k)
∑

δ sin k(δ)

ω(k)
= A, (8c)

1

6N�

∑

k

(1 + 2nB[ω(k)])
(k)
∑

δ sin 2k(δ)

ω(k)
= �, (8d)

where nB[ω(k)] = [eω(k)/kB T − 1]−1 is the Bose–Einstein
distribution function. In the thermodynamical limit N� → ∞,
the momentum sum is replaced by an integral, (1/N�)

∑
k →

(1/ABZ)
∫

d2k, ABZ = 8π2/
√

3. If the Schwinger-boson
condensation occurs at k∗, a condensation term should be
extracted in the momentum summation of the first equation,
equation (8a):

2S + 1 = ρ0 +
∫

d2k

ABZ
(1 + 2nB[ω(k)]) ε(k)

ω(k)
, (9)

where the density of condensates:

ρ0 = 1

N�

∑

k∗
(1 + 2nB[ω(k∗)]) ε(k∗)

ω(k∗)
. (10)
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Figure 1. The gapless spectrum with nodal points. To compare with the experiment, we choose the parameter J1/J3 = −0.2756, so that the
gapless nodal points occur at k∗ = ±(k∗/2,

√
3k∗/2) with k∗ = 0.158π . The blue hexagon denotes the first Brillouin zone. See more details

in the text.

Figure 2. The zero-temperature static spin structure factor at the parameter J1/J3 = −0.2756. The blue hexagon denotes the first Brillouin
zone. The divergent peaks located at q∗ = 2k∗ indicate an incommensurate order.

Our numerical solution demonstrates the condensation occurs
at zero temperature for spin S > SC, where SC varies with
the ratio of J3/J1. Since we have SC < 0.172 in our
concerned range of the ratio of J3/J1, we will always consider
condensations in the following discussions. The condensation
terms in the next three mean-field equations, equations (8b)–
(8d), should also be extracted carefully. It is noticeable the
per site ground-state energy can be simplified by utilizing the
mean-field equations:

E0/N� = 1

N�

(∑

k

ω(k) + ε0

)
= −3J1(A2 − F2) − 3J3�

2.

(11)

3. The incommensurate phase solution

The mean-field equations are solved numerically at zero
temperature. For our purpose, we set S = 1 in the calculation
in order to compare the result with the related experiment,
although the qualitative conclusion is spin-independent, but
the quantitative results vary with the values of spin. One fact
that should be noticed is that the mean fields F and A could
not exist simultaneously [14]6, so the number of mean-field
6 Introduction of both F and A mean fields can be found in [14]. Here we
find that if one supposes both F and A are nonzero at the same time, then an
inconsistent result will be induced. This fact is very useful when one solves
the equations. The merit of retaining both mean fields is that quite a good
ground-state energy value can be produced.

equations can be reduced from 4 to 3 in both J1 > 0 and J1 < 0
regions. In the two regions, we found the system falls into the
incommensurate phases with gapless excitations.

The quasiparticle’s spectra become gapless at the nodal
points, say k∗ = (k∗

x , k∗
y) = ±(k∗/2,

√
3k∗/2) (e.g. see

figure 1). Near the nodal points, the spectrum is linear in
|k − k∗|:

ω(k) ≈ α|k − k∗| + O(|k − k∗|2). (12)

At a finite temperature, a gapful spectrum will develop
asymptotically as 
gap = c1e−c2/T with constants c1 and c2,
which coincides with the Mermin–Wagner theorem [13]. The
incommensurate order at zero temperature of the system is
signaled by the divergence in the static spin structure factor:

χSz (q) = 1

N�

∑

k

1

2
[P(k + q)Q(k) − R(k + q)R(k)], (13)

where P(k) = [ε(k)/ω(k) + 1]/2, Q(k) = [ε(k)/ω(k) −
1]/2, R(k) = 
(k)/[2ω(k)]. Because the spectra is gapless
at k∗, ω(k∗) = 0, χSz(q) becomes divergent at q∗ = 2k∗ (see
figure 2):

χSz (q∗) = 1
16 N�ρ2

0 , (14)

as it is proportional to the number of lattice sites N�. The
local magnetization will be reduced significantly due to strong

3
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Figure 3. (a) The condensation term ρ0 versus J1/J3. (b) The
magnitude of the nodal point’s momentum of the spectrum k∗ versus
J1/J3. In the limit J1/J3 → +∞, the result reproduces the 120◦
commensurate spin order correctly. The incommensurate spin
wavevector observed in NiGa2S4, k∗ ∼= 0.158π lies in the J1 < 0
region. See more details in the text. (c) The coefficient α in
equation (12) versus J1/J3.

quantum fluctuations:

m ≈
√

χSz(q∗)
N�| cos q∗| = ρ0

4
√| cos q∗| . (15)

The important difference between the regions of J1 > 0 and
J1 < 0 is the nodal point’s momentum k∗ ∈ [π/6, π/3]
for J1 > 0 and k∗ ∈ [0, π/6] for J1 < 0 regions,
respectively. In the limit of J1/J3 → ∞, k∗ → π/3, the
solution reproduces 120◦ spin order correctly, while below the
critical value J1/J3 ≈ −3.71, the system becomes a saturated
ferromagnet, where the linear expansion, equation (12), will be
replaced by a parabolic form ω(k) ≈ β(k − k∗)2. The plots of
k∗ versus J1/J3 and α versus J1/J3 are shown in figure 3.

The incommensurate spin wavevector observed in
NiGa2S4 is k∗ ∼= 0.158π < π/6 [6]. From this data we
estimate that J1/J3 ≈ −0.2756, which is slightly different
from the value −0.20 in [6], i.e. we have a considerable FM
J1. Thus we can exclude the possibility of AFM J1 [10].
The local site-averaged spin at J1/J3 ≈ −0.2756 evaluated
by equation (15) is 0.6223 for this spin-1 system, while
the experimental data of NiGa2S4 suggest a larger value,
0.75(8) [6].

The nodal structure of the spectra, equation (12), leads to
a linear density-of-states (DOS) in energy E :

D(E) = 2
∑

k

δ(E − ω(k)) ≈
√

3

πα2
E (16)

where the factor 2 comes from the degeneracy of the
quasiparticle spectra. As a result, a T 2 law of specific heat
follows apparently:

CV /N� ≈ 6
√

3ζ(3)k3
B

πα2 J 2
3

T 2, (17)

where ζ(3) = 1.202. If one supposes that the T 2

law of specific heat of NiGa2S4 is ascribed to the gapless
incommensurate phase, a numerical estimation, J1 ≈
−3.8755 K and J3 ≈ 14.0628 K, could be obtained.

4. Discussions

Before ending this paper, we point out that the zero-field
susceptibility for this incommensurate phase is linear in
temperature:

χM/N� ≈
√

3(gμB)2kB

2πα2 J 2
3

T . (18)

Using the parameters noted above, we find that it is χM ≈
2.77 × 10−4T (emu mol−1), which is not in agreement with
the experimental data of NiGa2S4, χM ≈ A + BT with
A ≈ 0.009 (emu mol−1) and B ≈ 0 below 10 K [6]. The
Monte Carlo study also shows the classical version of this
model only produces a single peak in the specific heat [11].
These facts indicate that the model in equation (1) could not
account for all mysteries in NiGa2S4. Thus, the solution
shows the model equation (1) with AFM J3 and FM J1 has
captured the main features for an incommensurate correlation
in NiGa2S4, but it is still oversimplified as the minimal model
for all low-temperature properties of NiGa2S4. A biquadratic
interaction might be a good candidate for reproducing a finite
susceptibility at zero temperature. In the absence of the 3-NN
interactions, a biquadratic term can induce a quadrupolar order
and totally suppress the spin order. The T 2 law of specific heat
is also intact when quadrupolar order sets in [17–19]. It will
be interesting to see how the incommensurate spin correlation
will be influenced by the biquadratic interactions.
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